Mekanika fluida merupakan ilmu yang sangat mendasar dalam dunia fisika dan engineering, penerapanya sangatlah banyak dan variatif, mulai dari desain roket dan pesawat terbang hingga analisis biomedis. Meskipun ilmu ini sudah cukup lama berkembang dan digunakan, namun formulasi-formulasi dari hukum fluida ini masih banyak yang belum terpecahkan, misalkan persamaan Navier-stokes yang merupakan persamaan fluida dengan bentuk diferensial non-linear.
Tidak seperti persamaan-persamaan mekanika misalkan hukum newton F = m.a, atau energi E = 1/2.m.v2, persamaan Navier-Stokes tidak selalu bisa diselesaikan solusinya secara eksak dengan metode matematika yang ada, bahkan telah disiapkan hadiah yang cukup besar untuk orang yang bisa menyelesaikan persamaan ini (milenium prize). Salah satu penyebab tidak dapat diselesaikanya persamaan ini adalah sifat alami dari fluida yang pada kondisi tertentu bersifat sangatlah random, unsteady dan dinamis sehingga tidak dapat diprediksi dengan baik, kondisi ini dikenal juga dengan istilah turbulen.
Secara definisi, aliran turbulen adalah aliran dengan pola yang random dan kacau yang mengandung eddie, swirl, serta ketidakstabilan aliran didalamnya. Sedangkan lawan kata dari turbulen adalah laminar, yaitu aliran dengan pola yang halus dan terprediksi tanpa adanya gangguan antar path. Pada aliran yang laminar, persamaan Navier-stokes terkadang mudah untuk diselesaikan misalkan disederhanakan menjadi persamaan Bernoulli. Karena kesulitanya dalam menyelesaikan masalah turbulensi ini secara matematis, bahkan matematikawan terkenal peraih nobel, Richard Feynman menyatakan bahwa “turbulen adalah masalah paling penting dan belum terselesaikan dalam fisika klasik”.
Karena secara matematik analitis kasus ini belum terselesaikan, muncul beberapa gagasan untuk mengkuantifikasi turbulensi ini berdasarkan eksperimen, dan metode yang paling terkenal adalah yang dikemukakan oleh Osborne Reynold (1883), yang menemukan sebuah rasio non-dimensional yang mampu memprediksi apakah aliran tersebut akan laminar atau turbulen, nilai ini dikenal juga dengan Reynold Number, Re = rasio antara gaya internal dengan gaya eksternal = rho*v*L/miu. Dengan rho = massa jenis, V = kecepatan, L = panjang karakteristik, miu = viskositas fluida.
Menggunakan bilangan Reynold ini, dapat diprediksi dengan baik terjadinya aliran laminar, turbulen atau transisi (perubahan dari laminar ke turbulen). Misalkan untuk aliran di dalam pipa, untuk Re = 0-2300 aliran adalah laminar, kemudian Re = 2300-4000 aliran transisi, dan Re > 4000 aliran adalah turbulen, tidak peduli fluida apa yang digunakan dan berapapun kecepatan dan diameter pipa tersebut. Bilangan ini menyatakan bahwa semakin mendominasi gaya viskos dari fluida maka aliran akan laminar, sedangkan semakin mendominasi gaya internal maka aliran akan turbulen.
Pada ilustrasi gambar asap di atas juga terlihat aliran mula-mula laminar, namun semakin ke atas (jarak, L bertambah) maka lama kelamaan akan menjadi transisi kemudian menjadi turbulen.
Meskipun dapat diprediksi apakah aliran tersebut turbulen atau tidak, namun perhitungan pola dan karakteristik aliran secara spesifik masih belum dapat ditentukan. Alih-alih berusaha memperoleh solusi secara detail dari aliran turbulen, para peneliti dan engineer memiliki ide yang lebih cerdas, yaitu “mengelompokkan” aliran-aliran turbulen yang terjadi menjadi satu paket yang dapat diselesaikan secara matematis ataupun numerik, metode ini dikenal juga dengan permodelan turbulen (turbulence modelling), yang tentu saja akan bervariasi berdasarkan karakteristik aliran, geometri, reynold number dan lain-lain sehingga pemilihan model turbulen yang tepat sangatlah penting dalam analisis aliran fluida, biasanya hal ini dilakukan untuk analisis menggunakan metode Computational Fluid Dynamics (CFD). Untuk mempelajari selengkapnya tentang permodelan turbulen pada CFD, klik di sini.