Mechanical Properties of Typical Engineering Materials

Material Young's Modulus (GPa)(psi) Shear Modulus (GPa)(psi) Poisson's Ratio Yield Strength (MPa)(ksi) Ultimate Tensile Strength (MPa)(ksi) Density (kg/m³)(lb/ft³) Thermal Expansion Coefficient (µm/m°C)(µin/in°F) Fatigue Limit (MPa)(ksi)
Steel 21030457 8011603 0.3 25036.3 40058 7850490 126.7 25036.3
Aluminum 7010153 263771 0.33 9513.8 15021.8 2700169 2312.8 659.4
Titanium 11015954 446386 0.34 830120.4 950137.8 4500281 95.0 24034.8
Cast Iron 12017405 456527 0.27 22031.9 31045 7200449 105.6 20029
Copper 13018855 486962 0.34 7010.2 21030.5 8960559 168.9 608.7
Polyethylene 0.229 0.114.5 0.42 202.9 405.8 95059 10055.6 101.5
Carbon Fiber 23033359 152175 0.2 800116 1200174 1800112 -- 50072.5
E-Glass 7310587 304351 0.22 1500217 2000290 2550159 52.8 7010.2
S-Glass 9013053 355076 0.23 1600232 2500362 2490155 52.8 8011.6
Stainless Steel 20029008 7711173 0.3 25036.3 60087 8000500 179.4 25036.3
Nickel Alloy 21030457 8312035 0.31 30043.5 800116 8900556 137.2 28040.6
Brass 10014504 375366 0.34 7010.2 20029 8530532 1910.6 8011.6
Lead 162321 5.6812 0.42 202.9 304.4 11340708 2815.6 101.5
PVC 2.9421 1.1160 0.38 507.3 7010.2 138086.2 8044.4 202.9
Rubber 0.011.45 0.00040.058 0.5 50.73 101.5 110068.7 200111 --

Disclaimer: The list here is just a typical values of common materials in engineering application for quick reference. For more accurate values, please refer to your actual material vendor’s data.

Short Description About Mechanical Properties In the Table

  • Young’s Modulus: Measures the stiffness of a material, representing its ability to resist deformation under tensile stress. Higher values indicate stiffer materials.
  • Shear Modulus: Describes the material’s resistance to shear deformation, indicating how it responds to forces applied parallel to its surface.
  • Poisson’s Ratio: A ratio indicating how much a material contracts or expands perpendicular to the direction of compression or tension.
  • Yield Strength: The stress at which a material begins to deform permanently. Materials under stresses below this point will return to their original shape after load removal.
  • Ultimate Tensile Strength: The maximum stress a material can withstand while being stretched or pulled before breaking.
  • Density: The mass per unit volume of a material, affecting weight and overall strength of materials in applications.
  • Thermal Expansion Coefficient: Measures how much a material expands or contracts with changes in temperature. Important in applications subject to temperature variations.
  • Fatigue Limit: The maximum stress a material can endure for an infinite number of cycles without failing, relevant in applications with repeated loading.

TensorConnect project 2024 by pttensor.com